zenn.skin 무료버전 배포중!
자세히보기

perceptron 2

카테고리 없음
[ML] 퍼셉트론과 신경망 차이 (difference between perceptron and neural network)

1. 신경망(Neural Network) 퍼셉트론을 사용하면 복잡한 함수도 표현할 수 있습니다. 하지만 앞서 구현한 Gate들처럼 가중치를 직접 설정해주어야 한다는 단점이 있습니다. 하지만 신경망은 데이터들로부터 가중치를 자동으로 학습하여 직접 가중치를 설정하지 않아도 적절한 매개변수값을 구할 수 있습니다. 신경망은 기본적으로 입력층(Input layer), 출력층(Output layer) 그리고 은닉층(Hidden layer)으로 구성됩니다. 입력층과 출력층은 외부에서 볼 수 있지만 은닉층은 외부에서 볼 수 없습니다. 위 그림은 가중치를 갖는 노드들이 2개이기 때문에 "2층 신경망"이라고 하는데 표기에 따라 3층 신경망이라고 하는 경우도 있습니다. 2. 활성화 함수(Activation function)..

DataScience
[ML] 퍼셉트론 (Perceptron)

1. 퍼셉트론(Perceptron) 퍼셉트론은 신경망의 기원이 되는 알고리즘입니다. 퍼셉트론의 구조를 배워야 신경망과 딥러닝의 아이디어를 이해할 수 있습니다. 퍼셉트론은 다수의 신호를 입력 받아 하나의 신호를 출력하는 역할을 합니다. 이 때 퍼셉트론은 0 또는 1의 출력을 가질 수 있습니다. 위 그림에서 x1, x2, y는 뉴런(노드)라고 부르며, x1과 x2는 입력 신호, y는 출력 신호가 됩니다. 입력 신호가 다음 뉴런에 보내질 때는 일정한 가중치가 곱해집니다. 출력 신호는 입력 신호에 들어온 신호의 합이 일정한 값(역치, 임계값)을 넘는 경우에만 1을 출력합니다. 2. 퍼셉트론을 이용한 논리 회로의 표현 이 퍼셉트론을 사용하면 AND, OR, NAND와 같은 논리 게이트를 표현할 수 있습니다. 출력..